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This is the second annual report submitted i n  accordance with 

the provisions of Contlact No. 950670, "Investigation of Optimization 

of Attitude Gontrol Systens". 

the period September 15, 1965 through June 30, 1966. 

It suamarizes the research act iv i t ies  of 

This report is i n  three parts. The nrst part outlines the pro- 

The technical discussions are given gress during the reporting year. 

in Ehri;S B and C, i n  which Cne conclusions of the results and the plan 

of future work are included. 
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PAKT A 

GEKERAL DISCUSSIOH 

1. ~ D U C P Z O H  

This annual report summarizes the resul ts  of the research achieved 

during the period September 15, 1965 through June 30, 1966. 
the lnaterial included i n  this report was presented i n  the two preHous 

quarterly progress reports. 

an independent document so that no references t o  the previous progress 

reports are  necessary. 

Sanae of 

The repeti t ion makes this annual report 

In the design of an autopilot f o r  a space vehicle which is capable - 
of performing the task of soft landing, the problem of opt-1 control 

with bounded phase-coordinate and bounded control is relevant. By 

using the necessary and sufficient conditions, the general theory fo r  

l inear  autonoanous systems wos developed. A method of determining the 

o p t i m l  control, which is a d i rec t  application of the theory, was 

derived. As an i l lust rat ion,  two particular systems were studied i n  

- -  ~~~ ^-. _I_ . f _  

deta i l .  The first exlample deals w i t h  the time-optiaral control of an 

unstable booster with actuator position and rate l imitS.  The results, 

when evaluated with numerical data, agree with those tha t  have been 

published by other authors using different methods. The secand 

example considere a f lexible  vehicle subject t o  w i n d  dlstt~bance6. 
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This problem is more canplicated than the f i rs t  one since the r a t i o  of 

actuator position t o  its xate pleye an important role  i n  the extreme1 

control law. The control varieble is found t o  enter and e x i t  from i ts  

bound as often ea the time duration permits, which is  a nature1 r e su l t  
- -_ 

of the osci l la tory behavior of the system. I n  both examples the opti- 

nml controls a r e  expressed es expl ic i t  time functions. 

and t h e i r  conclusions together with the f u t u r e  research plen are 

These resul ts  

presented i n  Par t  B. 

The optimal control of antenna pointing direction was investigated. 

The problem is  fomuleted i n  such 

is  kept within an accepted region 

Eesentlally the controller forces 

direct ion by minimizing the e r ror  

a mnner tha t  the pointing direction 

with meximum probahility a11 the time. 

the antenna t o  point i n  a desired 

rate  of transmission of i n f o m t i o n  

during the ent i re  f l i g h t  journey of the s p c e  vehicle. I n  tine study, en 

assumption of the Markovisn property of the randm J i t t e r ing  of the an- 

tenna is made. I n  addition, the disturbances i n  any two smell :onsecu- 

t i v e  time intervals  a r e  assumed t o  be s t a t i s t i c a l l y  independent. 

the probabili ty dis t r ibut ion sa t i s f i e s  the beckward diffusion eqization, 

Thus 

and the problem reduces t o  the determination of a controller which 

maximizes the probability. 

i t e r a t ion  procedure WPS developed. 

A computational scheme based on an 

The technical discussion and the 

conclusions of the results,  as well as the plan of f u t u r e  work, e re  

given i n  Par t  C. 

3. mFEssIoHAL c o m m R s  

Professional personnel contributing t o  the progress during the 

reporting year a r e  as follows: 

J.Y.S. Luh, P r i n c i p l  Investigator 
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G.E. O'Connor, Staff Researcher 

J.S. Shafmn, Staff Researcher 



1. I:IITROAIC!FION 

I n  recent years, much effort  has been applied t o  optimal control 

problems with bomded phase-coordinetes. 

Gemkrelidze t1.23 treeted the problem based on Fbntryagin'e meximtna 

principle.  

can he echieved by solving the relevant calculus of variation8 problem. 

Dreyfus f43 studied the same problem by means of the dynanic p q r a r a i n g  

formulation. 

Among a l l ' t h e  studies, sufficiency conditions w e r e  virtually ignored. 

For pract ical  applications, wen when solutions do exirt, the necessary 

conditinEn clefi-verl by the -.ertccs ec+&crs are :'uiffiz*iilt te spay.  

Among the published l i t e r s t u r e ,  

Berkovitz [3], however. shoved t h a t  Gamkrelldeefs resttlte 

H i s  results a r e  i n  agreement with that of BexWvitz [5]. 

For a more restricted class  of problems, Chaw derived a simpler 

necesaary condition [6] ,  and the existence theorems based on an exten- 

sion of Ascoli's Theorem [73. For l i n e a r  time-optimal control systems 

with a convex res t ra in t  set, the necessary condition I8 a l r o  sufficient.  

A n  elegant proof of the necessity of the condition can be deduced from 

Neustsdt's recent work r83 while e rigorous proof of the rufficlency 

is given by Russell [g]. 

Gamkrelidze's r e s u l t .  It establishes the f a c t  t l m t  the n o m 1  vector 

appeering in the modified adjoint d i f fe ren t ia l  equation is always out- 

ward with respect t o  the set of a t ta inabi l i ty ,  and hence the necessary 

and suf f jc ien t  condition is relatively easy t o  apply. 

This condition is an impmcrent  on 
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b As t o  the ccanputzitional aspects of the problem, there are essenti- 

al-y two classes of methods. 

gradient, steepest-descent or  Its equivalent, which was studied by 

Dreyfus [4], Denham [lo, U] and Bryson [123 using the neceseary 

One class includes the method of the 

1 
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. a m t  priblemtiolll of control amplitude t o  its l r t e .  Section 6 

give8 the conclurione of the rerulte while Section 7 outlines the r;lan 

of future vo*. 

Cansider a l lnear  autozlcmous control process as described by the 

differentla1 rrystcm 

f = Ax + Bu(t) (1) 

in # on the intern1 [o,tl]. A and B are n by n and n by m constant 

mtr ice8,  respectively. kt (3 be a closed convex subset of and Q 

be a ncm-empty r e s t r a in t  set in I? given by 1 uil 5 ci, l= l ,Z , .  . . ,m. 
It is further assumed t ha t  the systan (1) is no-1, i .e .  the vectors 

Bw, Am,. .., A n o h  are l inear ly  independent where w is a vector haviag 

the directdon of an edge of the polyhedron n. The problem is t o  choose 

an adniesible control u( t )  C Q on [0,4] which steers the system (1) 

fra I given i n i t i a l  state x(0) = xo t o  x ( 5 )  = 0, such t h a t  the response 

x(t) c G for a l l  t r  l0,t.f ana t. is minimal. 

(knlrrelidze [1,2] and others have given necessary conditions tha t  the 

I I 

extrenml controls m u s t  satisfy.  

an extrenml control corresponds t o  a solution of a se t  of adjoint equations . 
The adjoint solution is allawed certain jump discontinuities and hence 

depends on a number of pramcters  representing: 

(a) 

These necessary conditions imply tha t  

The nmgnltudes of the possible jumpe tha t  appear i n  the adjoint solu- 

tion, and 

The time lengths of the arcs of the corresponding trajectory which 

l i e  on hG, the boundary of the phase coordinate res t ra in t  s e t  G. 

(b) 

The discontinuities are allowed a t  points where the trajectory (corres- 

pondiag t o  an extrexal control) enters upon or  exi ts  from an arc  on X .  
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. lhese are the general results. They do not, however, indicate 

specifically at which points the trajectory enters upon the arc, and 

when the trajectory must ex i t  fran it. 

gate these questions. 

problem is introduced which will l ead  t o  a method that determines extre- 

nnl controls as explicit t h e  functions. 

represented i n  tenas of adjoint solutions. A sufficiency condition given 

by Russell [93 shows that the solutions so obtained are  optimal controls. 

This paper attempts t o  investi- 

In the follaring section, a reformulation of the 

Then these functions can be 

3. F m F o ~ n m O F m ~  
P 

For a l inear  autonunous process, the calculation of trajectories 

by the "backing out of the target" procedure is valid. 

t h e  sense, define T = ti,. - t and T e tO,ti,.]. 
becapes 

To reverse the 

Then the system (1) 

&/dl = -kt - BU( T), (2) 

with init ial  condition X(T) = 0 a t  T = 0. Let 

B u(s) as, x('t) c G f o r  a n  Te ~o,t,], T 
.I. 

K(T) I: [X(T]IX(T) = -fo e 

u(s) c n fo r  a l l  sc [o,~]) 

be a set of a t ta inabi l i ty  a t  'I, then K(T) is the set of all points that 

can be attained in t h e  T fma 40) = 0 using adrierible controls. 

If T is m n l l  enom then K(T) is within the in te r ior  of 0, and it 

is known at K(T) is compact, comrex, an8 continuous i n  T. 

the tlanevereality condition applies a t  X(T), t&e boundary of K(T); 

and for each point on ax(T), there i e  a correrponding unique and 

admissible extram1 control t 17 3. 

Moreaver, 

When T is large, eabc segplents of bK(T) m y  coincide w i t h  XI. 

a l e  convex by hypothesis, then K(T) I s  aepin cornu; and Rusrell 

Since 



19, p ~ .  22-533 Showed a t :  

(a) a t  XC(T), the tnansversaiity condftioa is e,till miid ii the 

correeponding adJoint syskm is modified, and 

corresponding t o  each point on X(T), there 16 a Unique rddrriblc 

extraml control. 

(b) 

mus, by (a), for every unit  vector rl in there i r  a state  vector 

x corresponding t o  a point on bg(T)  for a fixed ? such tbt the projectfon 

P of x onto 9: 

P = (T, x) = -Jz T ' e B u(s) de 
' 

is a aaldmLlm, where ( )  = transpose of (), and u(s) C Q for a11 sc [ O , T ~ .  

By ( a )  and (b), the correspondi~ unique admissible extreml control 

u (s), which mmdmizee P, steers the linear, autonanous, nonml eye- 

(2) r- tht origin to the furthest point x in the direction I\ in a 

fixed t ime  f. 

* 

!Chi8 is equivalent t o  the case that, with the time sense reversed 

once more, the same extremal control will steer the system fram x t o  the 

orlgln i n  a fixed time T where f is minimal. 

t ion fg] shows that  the uni t  vector 

and the extremal control so obtained is the time-optimral control. 

Russell's suificiency condi- 

is  the adjoint vector a t  t i m e  T, 

Thus, the problem of detexmining a time-optimal controller is naw 

reduced t o  obtaining an admissible extremal control t ha t  maximizes the 

projection P of a s t a t e  vector x at 3 fixed time 't (in the sense of 

"kcking out of the target") onto 3 u n i t  vector 1. In  so doing, it is 

possible t o  find an extremcl control fo r  every fixed finite time f and 

f o r  every u n i t  vector Ti, end hence t o  express the extrapal controls as 

expl ic i t  time functions. Once this i s  ccmpleted, the s t a t e  vector 

x = X ( T )  cen be :mplted frm the mriatio,o of pre?aeters f9nnde w i t h  

the corresponding ex t reml  control. 
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!The dcxnain of con t ro lbb i l i t y  of the system can be determined by 

considering the l i m i t  of X(T) as 'c approaches inf ini ty .  

ponents of x ( T )  appmch + 0 as r approaches - then the doslain of control- 

l a b i l i t y  is  the ent i re  state space. If sane ccarponents of IC(%) approach 

f in i t e  l i m i t i n g  m l u e s ~  the damin of control labi l i ty  i s  a proper subset 

If a l l  the can- 

- 

of the state space, and the boundary of t h i s  danrain can be detenained 

frm the limits of x ( T ) .  

4. ~ u B s T A ~ B o o G T E ; R c o ~ p R o B a B M  

Friedland 1183 and Toohey r193 have studied the o p t l m l  autopilot  

design problem of Etn unstable booster with Ectuator position and rate 

lmts. 

poles i n  the frequency domin: 

Their simplified plant transfer function consists of three 

one a t  the origin and two on the reo1 

axis with equal magnitirde but  opposite signs. 

fur ther  by cancelling the pole a t  the origin through physical design. 

They simplified the problem 

Essentially the simplified and normlized unstable booster i s  described 

hy e aecnI2d oraer &LfferzntLal eq=tirn 

5$ - 5 = u(t)  

or, i n  nratrix notation 

i n  R2 with 

* &  A 

5 = A E + b dt) 

The problem is: 1) 

(a )  To detelrine the damin of controllability (In R ) i n  which every 

point can be steered t o  the origin by a scalar control u(t) subject 

to the C m t r p l n h  \u(t)l < 1 and ]i(t>l < D on rap), and 

(for a Fixed value of' u(0) whi& satirfles lu(0)l - 
2 

- - 
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X(T) = 

(b) To find a ti8ue-optinsl control function for eech i n i t i a l  s t a t e  In 

the damin of controllabil i ty.  

This problem w i l l  be tomulated as a bounded pbse-coordinate pro- 

blem and solved by the method described above. 

[1 - cosh (T-s)] v(s)ds 

S h h  (T-8) V(S)dS 

- f V ( S b  ' 0  

4.1 Bounded Pbase-Coordlnate Formulntion of the Booeter Problem 

The systan l e  a w n t e d  by defining x ( t )  = u(t)  and v(t)  = :(t). 3 
Then the system (3 )  can be rewritten as  

x =  = 

*3 :j 
(4) 

e 
X = AX + b v( t )  

This is a bounded phase-coordinate problem (in the sense I x  1 = 1.1 5 1) 

in which the scalar  variable v( t )  i s  required, subJect t o  the constraint 

Iv( t ) [  - < D on CO,tl], t o  steer system (4) fram an i n i t i a l  state x(0) = xo 

3 

ta x[\j  = u wi.i;h minimal tl. 

To proceed by the method of "backing out of the target  x = 0" we 

w r i t e  the system (4) with t h e  sense reversed (by defining T = - t ) ,  

h/dr  = -A x(?) - b v(T) (5) 

w i t h  X(O) = 0. the variation of parameters fornula, the system ( 5 )  

- I has a solution 

L 

where 1v(s)1 - < D is admissible on fO,T]. The adjoint system for the 
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systQl ( 5 )  is 

d$/dT 0: - (-A)' + ( T )  = A'*(?) 

Gdsrelidze r1,2] shaved that, in order to represent the extrenml v as a 

multipe of the signum of an adjoint solution for the bounded mse- 

coordinate control problem, the adjoint system m u s t  be modified. Thus 

a "totel adjoint vector" p(?) must satisfy the relation 

AT) ,  if l x 3 ( ~ ) \  < 1 

K' d7), if 1X3(?)1 = 1 
= (7) 

in which r=[ 3 
In so  doing, the necessary conditions for Y to  be extrenml can be 

( c )  p ( ~ )  is allowed certain j q  discontinuities a t  endpoints of intervals 

where 1x (T)! = 1 (for t h i s  problem, 9 and % *re required to be 

continuous and jumps can occur oxi~y in p since only x ie restrebed), 
3 

3 3 
ana 

'phue, the solution of the system (7) can be w r i t t e n  as 

q ( T )  = q(0)  cash Z + p&O) 6inb T, 
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q ( 0 )  C 0 8 h  T + pz(0) 8 h h  'I + k, ii I X  (?)I < 1, 
3 

P p  =[ 
9 if Iq4l = 1, 

where the ralue of the constant k In p (t) de- upca the Interval in 3 

4.2 The Jlkt-1 Ccmtrols 

To detelmine extrema1 controls a6 expl ic i t  tire functLoIu, fom 

the pro3ection P as defined previously. Let  the uni t  adjoint vector a t  

tiate t be 

i n  which 

- s in  pl, (11) 

and !v(s)! - < D is tidmissible on C9,r). 

a t  X(T) on hK(?), v(8) i s  extrema1 on [9,?] if It mxlmlzes P. 

equation ( 8 ) ,  the only possible values for v(s) are + D and cero. 

I x , ~  1, 

either + D or -D. 

and (13) the value of 1x 1 i s  one. 

Chang'a statement 1291 the t  if the system is time-optimally controlled, 

then either u fs extrema1 or d i i / d ~  is zxtremal. 

By the trensversali ty condition 

By 

When - 
the system (4) is normal and hence the value of v can only be 

If v is zero on an interval  then by equations ( 8 ) ,  (9) 

This cmcluelon I s  i n  agreemmt with 3 



c 

The function g ( s ;  'r, 0, p/) given by equation (ll) has the property 

t ha t  

d s ;  T >  8, 121) = -ds; T, lf + e, - Po; 
hence it suffices to consider only blf of the range of 6. 

ence, choose -1( < 8 C I). 

For conveni- 

Then P may be m-ltten as - -  

where 

f(s; T, e, 9) = COS e cosh ( 7 - 5 )  - COS e - sin 6 sinh (T-s) + tan @ 
(12) 

To determine the f o x  of the extrema1 4 s )  that maxblzes P, the 

method given by S c b e d e k e  and Russe l l  [21] can be used. 

culer problem, hawever, 4 s )  e m  be obbined by inspectlor3 fran getmetrical 

reasoning. 

monotone or bas one mximm and no minima. In a c t ,  f o r  0 s T and 

l cp l  < * / z  there are two cases of interest .  

and (b) -IC - e 8 < - p / 4 .  

For this parti- 

On the i n t e rn1  0 < s < T the function f(s; 'I, 8, jif) is e i the r  

~hese are: (a) -3 /4  e < o - -  

In the case (a) the derivative df/ds 

decreasing i n  s. 

In  the case (b) f has a maximum a t  sm = 7-tanh 

f o r  tan-'( tanh 7 )  - < 13 < -3n/4 where tan-'( tanh z) > -I( the value of 

8 is negative. 

0 so %fiat f is aonotme 

-1 ( tan  6). Hawever 

m 
T ~ U S ,  for 

-* t an l ( tanh  

r / ~  and o 5 s 5 z < QD, f is  mmotone decreasing in s if 

- c e < 0; or  f has a -urn a t  sm 5 z - tanh-l(tan 6) 



0 < I < ‘1. 

being munotone decreasing In 6 and the other to f hsVing a nmxinuaD 

Two tg.Pical case6 are shoun below, one corresponds t0 f - -  

a t  6- em > 3. 

In the caue 6harn i n  pig. 1, t-he ranges are -3/4 8 - < 0 and 

1 / D  < T - 4 3;D; hence f is monotone decreasiag i n  8 .  me form of extrema1 

or 

or 

or 

where 

g2 = -tan”{cos Bfcosh ( T - ~ / D )  - 11 - s in  8 sinh ( ~ - l , ’ D ) l ,  

= -tan-l{coe Btcosh (~,’2-1,’2D) - 11 - s in  6 sinh (T’2-1,‘2D)], 93 

By an inspection of the sketches in Fig. l w i t h  the basic reqiiirement i n  

mind that either 1v(s)1 = D or \u(s)l = 1 on the entire Interval 0 - -  < 8 0 ,  
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it Is easy t o  show tha t  any devht ion frca the d e )  given ab- would 

decrease the vmlue of P. I 

hence f has a maximum a t  sm = T - tPnh-' (tan e). The io= of the extre- 

t V(S) i s  

I - 
f o r  3 < s C (2s - l / D ) / 3  m - 
f o r  (2sm - l / D ) / 3  5 s < (4sm + if r/Z 5 P, > j31; 

o f o r  (4sm + 1 / ~ ) / 3  < s < T - -  1 

or 

or  

I 
J -1 - where ai4 = -tan 

pammeters were defined previously. 

same argument given i n  the previous case, the extxwml 48) m u s t  have the 

present form. 

[cos 8 [cosh 2/D - 13 - s i n  8 sinh Z/D), and a l l  other 

By an insgection of He. 2 with the 

This procedure wes ccrried out for all the possible cases. It was 

found that, the extreznal v(s) reaches zero and leaves zero as nmny as four 
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where 

* 

if 0 < 8 < ?l, 

< 8 < T 2 ,  

- 
if T 1 -  0, 
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them. 

a d  let To = 0 and T = T. 

tbt 

Denote the time s at  which such events occur by T ~ ,  id,. .,4, 

8 U p p o 8 i t q  the values O f  X (6 )  = U(S)  R F e  Such 
5 3 

Then 

cos 6 [cosh (T-e) - cosh (?-T )bin B[einh (T-8)-slnh (T-?,)I, 3 .  



I -  Using t h i s  expression f o r  p (s;T,B,@),It has a t  most one jump disconti- 

nu i t l ty  e t  s = 7 (equivalently a t  ~ K ( T )  ), and this happens only when 

!x3( t) 1 = 1 u(T) ! = 1. Furthemore, the expl ic i t  form of the extr-1 4 s )  

can be expressed os 

3 

-44 = D sepl tp,(s; T, 0, g)I 
= D s@;n C P 3 h  T Y  0, $/cos a3 

since cos # is positive on - i / 2  4 

ciency 

< 242. Finally, by Russell 's  suffi- 

c d i t l o n  [93, the e x t m l  4 s )  is  u l s o  the time-optiml v(s). 

The function p (s; T, 6, g )  f o r  the two typical c06es discussed 3 
previously are a lso  sketched i n  Figs. 1 and 2. 

meters T id,. . .,4, 6 and 8, are  obtained f o r  a l l  possible C 8 S e 6  i n  the 

ranges -a < e < 0, - 4 2  < a 
in TPbles I to VI. 

The fomulas f o r  para- 

1' 
S / Z  2nd o < T 0: The results a re  l i s t e d  - -  - 

4.3 Time-optimul Controls f o r  the Booster 

The state vector x( T)  can be readily canputed f rm equations 

( 5 ) .  ~n,kt B t-,v3icel rase as an example: 

- 3 / 4  < 6 - < 0, 1/D < T - < 3/D, g2 # < (see Fig. 1). 

?or t h i s  case, the extreraal 4 s )  is given In  equation (14), hence by 

integra t ion  over [o, 73, 
+) = D si- ( ~ / D - T )  + D sinh 1-1 + DID (a + 0) - ra + B - 1/(atp)3~/2 

-x2(T) = D cash (T-l/D) - D cash T-D + [a + B - l/(a+S)] D/Z 

x,(T) = 1 - D In (a + a). 

3 
%(T) D (ISinh (1 /D  - T) + Si& T - S i &  1/D3 

c 
kt a + p = ellD so tbt x ( T )  = u(T) = 0, then 

= D rC06h (1 - 1/D) - COSh T - 1 + Si& 1/D] 

for 1/D < T - < 1/D. A further choice of T t 2.5/D reduces the above to 
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Xl(2.5/D) 

X2(2.5/D) 

N- Sinh (1=5/D) + 8inh (2.5/D) - sinh.(l/D)] 
IfCoIh (1*5/D) - C-h (Z05/D) - 1 + sinh (l/D)] i x3(2*5/D) = 0 

Using the results so obtained to solve the original booster problm 

stated in equation (3) ,  

extranalv(s) now star ts  froa s = T a d  backs up to s = 0. 

it foncrvs that equation (14) i s  now r e m c e d  by 

revexme the time sense once again.  hue the 

Since T = -1, 

for t > s > t - 1/D 
for t - 1 / D Z  8 > In (a + p) 

- 

for ~n (a + 0 )  > s > o - -  
Since dx /at = V(t) in equation (4) replaces dx /dT = -v(t)  in equation 

3 3 
(5), hence x = u (sham in Fig. 1) now rwerse6 its sign. 

above example (now t = 2.5/D instemd) can be interpreted as folluws: 

Thus, the 3 

The contral 

DLI, if 2.5/~> - I > 1.5/~ 

U(S) -1, if 1.5/D> - 6 > l/D e, if l / D > s > O  - -  i 
w i l l  steer the origiml booster control system (3 )  fran the i n i t i a l  state 

XJO) = D T - s m  (1.5/~) + sinh (2.5/~)- sinh (i/~)] 

z(0) = D rcosh (le5/D) - cosh (2.’j/D) - 1 + sinh (l/D)] { 
with u(0) = 0 ta the origin in the minimum time 5 = 2.5/D and u(Z.5/D) = 0. * 

This example also i l lustrates the fact  that the parameters 8 and 

introduced in the adjoint vector 7\ serve as an aid to  derive the extrema1 

4 s )  only; they disappear in the fine1 solution of the time-optimal control 

problem. 

4.4 Mslximum Controllable Region 

The I13aximum controllable region is determined by examining the 



values  of X(T) as t OD. Aw>ne the t o t a l  of b e n t s  d i f f e ren t  cases f o r  

large T i n  Bibles I - V I ,  the boundary of the region for u = 1 can be 

determined fran the cases of (a)  x/2 > $3 > g1, 3/D < ‘I < QD i n  Table I, 

and (b) n/2 > j8 2 gk, 3/D < ‘t < Q i n  !Fable VI a8 fo l lws :  

(a) 

- 

~y equations (6), this caee yields 

+ -1 as T + QD which gives the equation 1 + l  

Itz 
Thus 

5 + 5 = -1 for u =  1 

(b) 911ir case yields 

mu8 

or 

= -D si& (1/D - T) -D Sinh T + 1 + D 6inh (2/D) -2 

%(T) = -D cosh (T  - 1/D) + D cosh T + D - D cosh (2/D) 
X3(?) = -1 + 2 = 1 

5 + 1 - D sinh (21D) 

5 - D + D coeh (2/D)’ -1 as ? + m. 

+ 5 = -1 + D c1 - exp(-2/D)] for u = 1 (18) 

The boundary of the region for u = -1 can be obtained fram other cases, 

ouch a8 the care of $if4 - > 9 > -1t/2, 3/D < 7 < In ’hble I. However ,  since 

ds; ‘t, 0, 9) = ds; ‘I, + 8, - a), ( 19) 

known nlat imr will hold if a l l  the r l p  o f  + 3 and u( = x ) are 

chryed. slmultaneoualy. 

(18), the bound.ry for u = -1 is given ,by 

3 
TherefoE, cornpond- to equation8 (17) and 
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The boundary of the region for -1 < u 1 can be found from the case - -  
of 8, > Jd ab, 3/D < T < i n  Table I, which yields 

x ~ ( T )  = D COSh (T- l /D)  - D Sinh 'I - D + Hl/(ata) - ( W S ) l / Z  

x3( T) = 1 - Dln(crq3) 

the l i m i t  as T - yields 1 3 Since u = x and a + 5 = exp r ( l  - u)/D], 

5 + 3 = -u - D 11 - exp r -  (l-u)/D]} for u = 1 - D I n  (a + 6) (22) 

which reduces t o  equation (17) if u = 1, and t o  (21) i f  u = -1. 

property of equation (19) and the same argument, the other bomdary equa- 

t ion  f o r  -1 < u < l can be deduced from (22) a s  

By the 

- -  
= u - D{I - expf-(l + u)/D]) f o r  -U = 1 - D I n  (we). (23) -xl - x2 

Equation (23) reduces t o  (18) if  u = 1, and t o  ( 2 3 )  if u = -1. 

eqllations (22) 2nd ( 2 3 )  determine the lnaximlun controllable region (Fig. 3) 

f o r  -1 C u < 1. 

w i t h  those* given i n  F r i e d l a d ' s  paper r181 when c. scale fzctor  of 3.739 

Consequently, 

Fig. 4 shws the regions fo r  1/D = 3.739, which agree - -  

fer t h e  x1 end "z LXeS :ire cczsid2red. 

I - .  TRE OSCILLATORY SPACE VEHICLE PROBLEM 

I n  the design of 3n ciitopilot for  E large f lexible  spice vehicle 

the problem of bending moments r e k t e d  t o  the wind disturbznces is  of 

reli-. t i vc  i m p o r ~ n c e .  When the motion-controlling E !itustor has saturntion 

3.I.mits or, both position rn8  rc te ,  the design problem i s  quite involved. 

A s  i rxle, the alrtopilot sho:iLd be capable of m.neuvering the uctuator 

i n  i- nest ef f ic ien t  mcnner uhi le  encountering the worst wind disturbance. 

* I n  E private canmimic-otion with Dr. B. Friedlsnd of General Precisiop, 
Inc. ,  L i t t l e  FaI l s ,  New Jersey, we agreed tha t  i n  Pig. 6 of his pper r183, 
the sca le  of the q -t xS s sholild ci rry negetive signs. 1 
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Themfore, an i n i t i a l  invertigation ir  the detelrmiaatioa of the worst 

disturbmce that can be bundled by the ami l ab le  actuator in a fixed 

ti# intenal. 

thta -e are called extreml inpub. 

5.1 Problem PowuZation 

The control inputs genersted by the actuator to sene 

When the angle of at tack Is -11, the longltudiaal motion of the 

vehicle can be described by a s y s t a  of l inear  d i f fe ren t ia l  equations. 

It is assumed tha t  (a)  a pole ai thc m n t  tmnefer function a t  the 

origin in the frequency damin is cancelled by menna of sane empensating 

device, and (b) the ibmpbg I8 neglibible, and the pLant txansfer 

function is ereent ia l ly  dcaimted by a psir of almost purely iarrginary 

poles. 

undamped rncillatory ryuta. 

f lex ib le  vehicle system. For the cmvenience of analysis, the control 

vulriable I8 treated as an auQpented-ryutem rtate variable, and the 

!hum the approximte vehicle can be represented by a second order 

!hi8 appnmdation is allowed for nany 

equntlon of motion i r  noraalized as follmr: 

when 

x =  , b =  

- 
0 

0 

1 
? 

5 = noxmlited mnt p i t i o n ,  u( t )  = normalized t hnwt  deflection with 

1u1 ,< 1, r(t)  = nozmalited thrust  deflection rate w i t h  IvI - < r/k. 

value of k 1s greater  t b n  or equal to 2, which a l l w r  the extram1 

control t o  enter upon and exit framlta  bound once every half cycle of 

The 

the oscil lation. 

tbn t  the o e i n  is an equilibrium state.  It is required t o  determine an 

ex t ram1 v(t) which s teem the rystem (24) from the origin t o  a furthest  

The three-dimenrio~ml coordinate system is so chosen 



point x In a given direction In a pixed t l m e  t. Thls I s  again a bounded 

@mme-coordimte control probleza and a l l  knm results on this type of 

problem apply. 

By the sarne argument, which was based on Gemkrelidzels [1,23 result, 

the "total adjoint vector" At)  rmurt eatisfy the relation 

-A'  p(t)  , if I x  < 1, 

-A' p(t), If = 1, 

at>= ( 3 

where ( ) *  = transpose of ( )  and 

Thus 

k = - sgn CP3 (t) 3 x 

In which 
T I +1, If p > 0, 3 

E@ P3 =G, if P3 = 0, 
i f p  < o .  3 

I s  alluued certain jump dlscontinultie8 a t  endpoints o f  ' p3 Furthemore 

Intervals v h e n  l x  1 = 1; and p = 0 whenever I x  1 = 1. 

5.2 The Rtnal Controls 
3 3 3 

be a met of  mttalnabllity a t  tm t. The trsn8veraality canditlan intpies 

that for every unit vector t\ I n  R3 then I s  (L alate vector x cornspondlag 

to a point an the boundary ob at) fm'a fixed t much that the projection, 

P, of x onto l r  a m%lmm. Moreover, the commI#ndiag Unique adaimsible 

e-1 d o ) ,  which r x t i t e a  P, eteera the s y ~ t e a  (24) fxm the origin 



to the furtheat point x i n  the direction in a fixed f i r  t. Rluoell*r I *  

I 

1 rufflciency cctdition [g] shows tbat 1 is the adjoint vector et  tiw t, 

I end v is the minlml-time c m t m l .  

Let 

1 \ =  

The extreml v which mlcirPizes P can be determindl by Inspection for 

every fixed 6, $5 and t. Since P(8; t, 8, a) = -P(s; t, r[ + 8, - a), 
it suffices to consider only half of the range of 8. Figure 5 shaws 

e typical case of k = 2.5, 31[/5 < 6 < 4a/5, w i t h  l h / 5  

The f o w  ai extrenralv(s) is 

t + 8 14r/5. - -  

(a) for R/z > a > tan-’ tcw(&/5 - e) - c m  83 2 o - 
r z . 5 / n ,  if o < 6 < 2 ( t  + e)/3 - 22n/i5 = s1 

0, if T1 < 8 < t - 4%/5 = T2 

2.5/n, if T2 < s < t ,  

or 
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The mime procedure was carried out f o r  all possible rengee of 8 and 

t. It was found thst, In &eneral, the ext-1 v(s) reaches zero and 

leaves zero as often as the length of t permits. Denote the t i m e  at 

+9, ..., r7-1; 2 3 1  5 < T23+29 p,(s) = 0 for T 

where t is a cmponent of satisfying dt/ds = -A‘t .  A 6  indicated in 
4 3 

Section 4.2, choosing p (8) = t 3 ( S )  - t3(T2i+1) for T2i 5 S T2i+1, 3 
i=O,  . . . , If, yields p ( 8 )  being zero and cmtinuous a t  T2i+1y and 

consequently the jump conditions must be satisfied e t  TZi, 1=0, . . ., If-1. 

Since ‘tl i e  the unit addoint vector a t  t i m e  t, 

3 



. 
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Therefore 

where 

go = direction limit f o r  ll a t  which p has a jump discontinuity 3 
(go l e  a real number). 

discontinuity a t  s = t which happens only when I x  ( t )  1 = 1. 

form of extreplal V(B) can now be expressed as 

Thus p (a; t, 8, a) hns a t  m o s t  one jump 3 
The expl ic i t  3 

I n  figure 5, the function p for  the typical came is also sketched. 

i=1, 2, ..., 2B, 6, and 8, a re  determined 
3 

The foxmules for pmmetera 

for a l l  porrrlble choices of k > 2, 

A l l  the nrulta are tabulated In Tables VI1 and VIII. To w e  these tabler, 

f l m t  locate the Case lluaber from Tsbles V I 1  for the appropriate ran#er of 

0 8 < x ,  < #/2, and 0 < t < m. - - -  - 

k, t and 8. Then on TabletVIII, f o r  every (%re H e r  and every rsnge 

of jif, a r e t  of parametera of Ti, 1=1, 2, ..., 21, 8, and Bo a= given. 

6. conem1011s 
Tbe amlymlr prerentcd i n  t h l r  report 18 a dl rec t  appllcatlan of the 

ofl-1 control theory. 

ruftZclent candltlam of the optiml control with baunded pbme-coordiM* 

The rcheme, which l r  bared on the necerrary and 
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mkes it pomrible to  express the control am an expl ic i t  t h e  functiaa. 

In  the exmaple of the u t a b l e  boocrter control probla, the results 

44 

1 

are tabulated and sketched f o r  a caaperison with thoae in the p r b l l a h d  

literature [lS, 193. The i n v e s t m t i a n  of the oscill.tory r p c e  vehicle 

rcrealm the structure of the extrenml ccmtrol variable, which ~ c i l U t e r  

in accordance with the osci l la t ion of the controlled vehicle. 

7. K A l I I o o p ~ ~ ~  

The ieaediate step will be a study of em mderdarped a r c i l l a t o q  

plent w i t h  bounded amaplitude and rate control. The invemtigaticm will 

yield the nature of the the-optlrml control function for process w i t h  

a pair  of crpbnlex conjugate characterist ic roots. 

A t  t h i s  point, the research can be divided into three pera l le l  pths: 

extend the study t o  the 8ame processes b u t  w i t h  integral  q u a h t i c  (a) 

cost cr i te r ia ,  (b) independently slmulate the problem on a c m t e r  

and campare the data so obtained agpixmt thore f- analytical  results, 

and (c )  study the same time-optlnml control problesps analytically except 

tbst c=:: af t>e s t s t e  -v=fiab~es be ale+ 1run6d (eo Tar tine bounci is oriiy 

. Gamkrelidze's x3) applied t o  the augmented state variable, viz. u = 

[1,2] necessary conditions imply tha t  the adjolnt solution ha6 certain 

jump discontinuities. However, his results do not indicate haw many 

discontinuities w i l l  occur. So far i n  ell our investigations, only 

one bounded s t a t e  variable is involved. The results indicate that  there 

is a t  most one discoatinuity which can be arranged a t  either the bqlnniag 

or  the end of the time interval. It I s  therefore conjectured that the 

number of jump discontinuities in the adjoint solution is the 8ame as 

the number of bounded sta te  variables. 

shown in the above study (part (c)) .  

This conjecture remins t o  be 

I 

Next, the investigation of a bounded wee-coordiaate  problem bving  



- 1  

I 

one rea1 and a pai r  of caaplex conjugate characterist ic root8 v i l l  be 

started. It is intended to develop an algorithm for the tire-optiaaal 

control problem first, and then an algorithm for the problem with infie- 

gral quadratic cost c r l t e r i e .  These algori thm will be prqmmned on a 

canputer, and the reaults evalueted. 

The simulation will again be carried out i n  the following order: 

(a)  construct analog simulation of p h n t  and controllcms, (b) aemlop 

block dlagxure of controllere suitable for f u t u r e  mechanization, 

(c )  

pxactical control systems, (a) 

expressions, and (e) 

the controller. 

develop elmulation, analog and/or digitel ,  su i tab le  f o r  terrting of 

campare with the results from anslytical  

test varioue idees for  s i m p l i i y i ~  and approximting 

Finally, the mate step of investigation will be applied t o  the s a m e  

class of control problems for linear time-varying processes. If date 

a r e  available for practical  ayetems, these systema will first be approx- 

imeted by third-order systems, then cclaputed and simaleted by the methods 

developed in t h i s  research. 

determine tbe relat ive m e r i t  of this research. 

A careful check of these results w i l l  
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1. Im!RO~c!rION 

After the b r g e t  is located, the general control problem for the 

For the anterm pointirrg system is the problem of direction lock-in. 

antenna ryskm which is mounted on a apace vehicle, the effect  ceured by 

randam dis turb~nces  is significant. Bssically, the purpose of the antenas 

system is the tmnsmission of informtian. Since the error  rete or tmns- 

mission is di rec t ly  related t o  the direction pointtag error, the controller 

should be designed t o  minimize the error rate. 

re la t ion between the e r ror  rete and the pointing e r ror  is sketched i n  

Figure 6. 

classi f ied Into four zones, viz . ,  good perfonmnce, f a i r  perfoxmence, 

transit ion,  and poor perf'oxmmce. 

angle in the coordinate system of pointing direction is shown i n  Figure 7. - 
With the me8sure of perfornrence so defined, the controller i e  assigned t o  

operate in two modes as f o l l m :  

Mode 1--Mode 1 i e  i n i t i a t ed  by the entry of the pointing angle in to  the 

Graphically, fi typical  

The measure of perfonaance of the controiier is arbi%rsr i iy  

The corresponding zones f o r  pointing 

good performence zone. In Mode 1, the controller generates e 

control input which mininrizes the probebility of entering the 

t ransi t ion zone a t  any instant during s o e  fixed time interval T1. 

Mode 1 is tewinated by the entry in to  the poor performance zone. 

Mode &-Mode 2 is i n  e f fec t  whenever Mode 1 is not. 

' I  
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In M e  2 the controller generater a can tml  inp r t  M c h  mxi- 

mi- the probabili ty of entering the good p r f o m n c e  t a m  a t  

.QC Instant  duriag scme f h a d  t h e  Intern1 Te. 

Thur fhe opfiritstion procedure can be carrid out  In two repsmta 

prk: 

(e) Detelrlne the tine i n t e m l r  T1 ond Te, end the rrdli rl, rz, 

3 and r of boundnry c i r c l e r  of the four zcme6 (see -re 7) by iini- 

rising the error rrte with reapect t o  T1 u a t l  4, and to rl, rz, and r 

In each rode of operrtioa, &tendne IAe control input that 
3' 

(b)  

miairice8 (or msinlze8) tihe agpwpairte probability. 

R a r t  (b) i r  deflned a8 the op t lml  control problem of the an- 

pointing direction. An arrlyoir of thi8 problem, which I s  a di rec t  appll- 

CRtItXl of 'tht reStllfr by FWltm@h .Id Hl.hchmLa C l ] ,  i I 5  prc8cntsd. in 

the follariw recti-. 

taro mll cozmecutive time i n t e r n l a  a re  an- s t a t l r t i c a l l y  Wependent 

and hence the nrponrre is a krkov procems t221. 

tion, therefore, ~t i r i " i e r  the X o - ~ o r o v s s  bac*hmzd eqmt'rm. The 

derivation ai the geneml fom of the equation is included in the Section 

2, which a180 rerver the purpooe of revleu. Section 3 outllnea the M8h- 

chenko's purouit problem tl]. The rterial I s  not new b u t  an edited am- 

mry of Mlshchenko's work. 

stand the problem, ea w e l l  a15 the method of relving the problem. 

4 giws the pmblan etatenent. 

in such a mnner t h a t  the method urd i n  the punuit problem can be a m l e d  

plvlvided certain condltioxm are ret. The technical develapent and di8- 

cussion on the ante- pointing dlrectitm .nd the height of vehicle con- 

trol problem a= given In SectIan 5 and the ccnclurian of the lnvemtipptim 

In Section 6. The flow charta of carqprtrr prolnu fo r  evaluating aurface 

In the u u l p i o ,  the &a di8turbancem in any 

The probability dlstrlbu- 

It I8 Intended to help the -der to under- 

Section 

The lpocedun  ab investigmtion 18 amnged  

c 



integrals and solving Fredholm equation of the second kind a r e  included 

i n  the Appendix. Section 7 outlines the plan of future work. 

I n  t h i s  section the general fonn of Kolmogorov's backward equation 

and i t s  derivation e re  discussed. 

oii t l ine the essent ia l  properties of rsndan processes thet a re  governed 

by the equation. 

tlirbences, the geneml form reduces t o  the familiar backward diffusion 

e qw ti on. 

The purpose of this section is t o  

With rdditional conditions imposed on the random dis-  

Consider the process whose dynamics a r e  described by the differ- 

e n t i a l  system 

dx = f ( x , t )  a t  + an (25) 

where x and n a re  the m-dimensionel s t a t e  end disturbance vectors, res- 

pectively; f (x , t )  i s  assluned differentiable wi th  respect t o  both x and t 

almost everywhere. I n  a small time interval st, the change of s t a t e  can 

c-..? be writ ten as  I-ZLJ 

6x = f (x , t )  E t  + En + 3(6t) (26) 
0 6 t )  i n  which 3(6t)  is  such tbt lim 

s m  
&- = 0. It is  asaumed tha t  the 

dis twbmces B1n and 6 p  i n  any two slaell consecutive time intervals  

61t end 6 2 t  a r e  s t a t i s t i c a l l y  independent. 

eseumption is equivalent t o  the condition that the 7-process bas inde- 

pendent increments. 

6x is affected by the value of x a t  the end of the previous time inter-  

va l  but  not the value e t  m y  instant pr ior  t o  tha t  end point. 

l i n e a r  system, the necessary condition for x-procers being WmWvian 

is given i n  the following theorem. 

Le t  6a = mt, then the 

Intui t ively the x-process is Markavian since the 

For 



Theorem 1 

Con8ider the l inear  process in which the variation of the state i n  

a amall t i m e  interval is 

8~ = A(t) x 6 t  + C(t) v ( t )  6 t  + 0(6t) (27) 

where A ( t )  end C ( t )  a re  measmble nmtr izes  on [to,tl] with appropriate 

dimensions. If the x-process is Markavfan then the distwbance %process 

bas independent increments. 

The proof is  sketched as fallowe*. L e t  X(t,r) be an n by n matrix 

satisfying the relations 

where I is an ident i ty  matrix. Then 

from which the covariance matrix of the x-process E t  a sequence of time 

instants can be compvited. 

i n  the wide sense [Z3, Theorem 8.1, p. 2333, the Theorem 1 ::an thus  be 

By applying Doob's theorem on Markov process 

proved. 
Let in( iv)  = Ere iv'n, 

be the characterist ic function of n where v is en arbi t rary vector having the 

same dimension 8s tha t  of n, E denotes the expection value and ( ) '  = trans- 

pose of (). Let  F = F(x,t,iv,Gn) be a functional setisfying eGw = OSn(iv), 

then F is called a distrirbence functional. 

. 

* The proof i s  suggested by D r .  Glenn E. 'Ifaxter, Professor of Mathemetical 
Sciences er?d S+atiet ics2 Purdue TJniversi ty. 
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The disturbance functionel is additive if' the noise has independent 

increments. 

Proof [223 - 
4n .(iv) = E e iv '  C tjkn 

k 

? i v  6kn = n E e  
k 

6 t  Fk 
:- ll e 

k 
r 

6 t  Ti: Fk = e  

- 2  

L e t  pl(z) be some arb i t ra ry  functional havi~g all its pe r t i e l  derivatives 

where z is en  arb i t ra ry  vector. L e t  V = d/dz. Then w( z+n) = Qn(v,)j3( 2). 
2 

Only the cese of scalar z end scalar n w i l l  be sham. The vector 

OD 

.#n(iv) = E eivn = 7 E[nk (iv)k/k !] 
k= 3 

The Taylor aer ies  of pl(z+n) about e Is 

m 

= nk Z pl(t)/k ! 
k=O 

hence E pl(z+n) = #n(vZ) p l ( t ) .  

A linear differential operator will nQv be defined which descrlbee 



1 
the generel fonu of ICohogo~w'8 bcicuard equation. 

g 
tmns i t ion  probability function, 1-e., Prty E Cllx(8) = A XI, and p(y,t(&a) 

Let t = 8 + 68 > 6 ,  
I 

x(s + be), G = e fixed &re1 ret, G C  FP. L e t  ~ ( ~ , t l Z , s )  be the 

be the corresponding density. 

y 

For a snmll t h e  interval  [a, 8 + 88) ,  

x(s + 8s) = X(S) + 6; + O(6s) and hence by equation (26), 

a(y) = P, ( x b )  + 6: + o ( W )  

By Lema 2 end the definit ion of' the disturbance functional F, 

E a b  + 6 4  = $jn(vt) B ( 4  

= [l + 6s F(;,r,Vz,6n) + O(Ss)] fZf(z). 
A A 

Let z = x + f(x,s)bs, then (30) becaaes 

B u t  by the Taylor ser ies  expension about x, 

a(; + f(G,s)Ss) = &) -t- 6s f ( $ B ) '  Vf pl(f) + O(68 2 ) 

8 
hence 

A 

f (y)p(y,t!;,s)dy = pl(2) + Ss[f(:,s)'Vf + F(;,s,v;,6n~ a(x) + 9(6s) 

+ o ( W  (31) (2, 8) 
= g ( 2 )  + 6 B  u 

where U A 

is  the l i n e a r  different ia l  operetor, f(2,s)'V; is the system operator end 

F( 2, s,Vk,8n) i s  the disturbance operator. 

= f(2,s)' V; + F(;,sYV;,8n) 
(XY 6)  
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Theorem 2 

If 8n = 6k n where 6 n's a r e  s l x t i s t i c e l l y  independent, then k k 

Proof 

Theorem 3 

This is e di rec t  conseqience of Lensaa 1 rad the def ini t ion of F. - 

The Kol~nogomv ' s be c.kvr3 rd eqre tion 

holds f o r  s < t with terminal conditions - 
1, i f  y E G es s -, t, 

3, if y f G as s - t. P(G,tl;,s) = { 

Proof r2zj - 
A m L e t  x = x(s) E E c R end z = x(s-6s). Then 

P(G,t!?,s-58) = 1 P(G,tl$,s) p (~,slz,s-Ss) &. 
km 

The tenaim1 cmdltlons a re  sa t le f  

+ 0, hence 

ed by t r i v i a l  reasons since In  zero 

time lntervsl ,  the probability of change of s t a t e  I s  zero. 

Theorem 4 
n A 

Let  P E P(G,tl:,s), 8x = j t h  compnent of vector bx, and 
j 

! 

I 

! 



(2,') L lir (E bx bA ),'f58. If the disturbance Bn in any -11 bJk 6s 0 j x k  
tire in tern1  is s ta t i s t i ca l ly  independent and gauurian distributed with 

zero 1-13, then the K o ~ 0 ~ ~ 8  equation becaner a bachmrd diifuaion 

cqm tian 

with the same temiael conditlona. 

+ fk 8n + 6n 6 /Be + 0(6r)/88 3 3 %  
A 

= 

In a -11 t- interval 66, f(:,s) 6s i s  the mean of 6x r~3, p.2731, 

hence E f j  6% = f E 6%. 

E 8: 6& /6s = f 

Therefore 3 

+ fk E6n + EBnj6%/Fs + 0(&1)/6s J %  3 %  J 
= E 6njS%%s + 3(8s ) /Bs .  

A A A  Consequently, b (x,s) = 1183 (E 6xJ6%)/6s 
6s - 0 jk 

= l i m  (E 6nj8%)/8s 
6s - 0 

Since 8n is gaussian distributed with zero meen, then 

iBn(iv) = E e iv'bn 

= E eXpr C (ivh) 6nhJ 
h 
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i 

. 

But log (1 + w) = w - h w2 + 1/3 w3 - ... f o r  rwl < 1 

Let )sn(iv) = l+w 

Then w = C C ( i v  )(ivk)E 6n.6 + ... 
Therefore log 16n ( iv )  = 

3 J %  j k  

C C (ivj)(ivk) E 6x1 6 + ... 
* L  J q r  

A 
By definition, 

hence, by replacing i v  by 9; and teke 6s -. 0 as a limit, 

log $..(iv) E 68 F(x,s,iv,Gn) 

Corollary 

L e t  6n = T 6s. If 7-process is a Wiener-Leoy process, then the 

backward diffusion equation holdr. 

- Proof Since 7-process has stetionsry independent lncremente, and T(e) 

l e  gauerian distributed with eem man, it I s  equivalent to the condition 

tha t  6n In  any -11 time interval 1s e ta t ie t ica l ly  independent and geueelan 

dlr t r lbuted with zero mean. Hence the proof followr Theorem 4 .  
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fll 
The pursuit problem can be stated e 1  follows. Let  ]r be the m-dimen- 

sionel s t a t e  vector of a eyetem defined by 

(dY'dt = f(y,t,u) 

340) - 5  
where u is the k-dimensional c tn t ro l  vector and f the mr-dlmemioml 

measurable vector w i t h  k 

m a v i n g  point. 

with t ransi t ion density 

m. Let z be the state  vector c+f a nand- - 
Given tha t  z is a sample function of a lbrkov p c e e ~  

K I F )  

where the right side of the equatiosl I 6  the conditional prababillty density 

associated with the event Z(T) = C given the event Z(O) = z 
z(a) are randan variables while C and F are numbers). 
the Markov process is continuous with paobebllity 1, and suff ic ient  per t la1  

derivatives exist. 

(z(T) end 

It I s  aislped that 

The problem is ta ftn4l u which madmiter the p b b i l i t y  

th8 t 

11 n f  - \  J \ I 
:I u \ T 1  - y \ 5 J l l <  

for a given e > 3 and for some 7 CTO, TI where T is given. 

This problem is solved 8s follows. The f u n c t h m l  $U(O,t,r) is defined 

as the probability that  the randamly moving point is captured between times 

d end 'I given tha t  z(0) = F, end that the control function is u. 

functional were available, it would be straightfolnard te apply the 

mldmum principle, and thus solve the problem. 

If the 

U 

The fallawiag is an aut- 

l i ne  of Pontryagin's approximetion t o  (U ,F?T) .  U 

The f i rs t  s tep  is  t o  show that  t U ( U , F , ~ )  I s  a solution to . 

subject t o  the boundary conditions 



+JT, F, T) = 0 

for ell 5 > 3, 

13 
rb 

tii(cr,v) = o(expl\ SI\> is continuous. 

(a,T)} i s  continuous, bounded and positive definite, 

- 
A solution i s  then obtained i n  the form, vith z ( 0 )  = 2, 

*p, z, T) = m-2 r(o, L, T) + o(e m-2) 

where m is the dimension of the s t a t e  spece. 

Independent of u o r  t, r is given by 

For the case where b i s  1 3  

r(o, 3, T) = ro(g, Z, T) + r+o, E, T) 

where 

Ai = eigenvalues of rb 1, i d  



8 = a continuous closed surface defined by 

- R 

8 = angle betweem the vector p froan 9 to 9 and the normal t o  S a t  7 S. 

4.  PRO- B T A W  AW) =OD OF IlIWBTIGATIO10 

%e section sta tes  the generel problem of interest .  The method of 

investigation and the prepmitory cmpiAtatim t-jf t x z i ~ ~ i t k m  ihsities e r e  

a l so  presented. 

4 .1  Problem Statement 

L e t  the motion of the vehicle be described by a system of different ia l  

equations. It is  convenient t o  noxnmllze the equations as 

(33) dx = f ( t , x )  d t  + B(t) u( t )  d t  + C(t,x) dn 
- 4tJ = x 

where x is the system s t a t e  vector; u is the control input vector; n i s  

a samfle vector of a randm process; f I s  the system-parameter vector 

which is asaumed to  be differentiable with respect t o  both t and x almost 

everyuhere; B and C a re  matrices w i t h  appropriate dimensions. As a rule, 
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, 

the dinemiom of vectorr u end n .are laver then the t  of s t a t e  vector x. 

It is known thst if the disturbances dn in eny two -11 (~onsec~itive 

t i r e  intervels  ere s t a t i s t i c a l l y  independent, then the response x t o  the 

rJntem (33) is a lrEarkov process f223. 

dlrturbance An In any ~ a a l l  t i m e  interval As, the t ransi t ion probehility 

function P(G,tly,s) where y = x(s), satisfies the beckverd difflision 

A 8  shown i n  Section 2, for Gaussian 

equation 

for t > B > 0, i n  which - 

for e fixed t and a fixed Bore1 s e t  G. 

For the purpose of discussion, 88a‘nne the system s t a t e  is i n  e 

si tuat ion such that  the control input u is In  Mode 2 of operation ea 

defined i n  Section 1. 

the good prfonmnce zone i n  the f i n i t e  time interval  r t .  to + Tz>. 

outlined i n  Section 3, Mlshchenko r13 ahoued that if the s t e t i s t i c s  

of the  x-process ere described by eqmtion (3), then 

.stisfie8 the seme eqtrstlon 

Let t u ( t , x , t o  + Tz) be the  probability of entering 

As 

= tu ( t ,x , to  + T2) 

vith bolmdary conditions +u(t,%,to + T2) = 1 for all t, end 

ThC problem I 8  to  determine +, which 1s e functions1 dependent an u, 

and c h m c  e control u tht rxlmlz .ea  *. 



4.2 Method of Investigation 

I n  order t o  cpply the r e s u l t s  of the  pirs*iit problem (Section 3), 

F i r s t  of ell, the 

To be more precise. I t  is desired t o  

the method of investigation is  olitllned as follows 

system is  assme4 t o  he l ineer .  

determine the control ve-tor . i  whi-h meximi7es 

Pr x( t ) I \  r21 f o r  € m e  t e rto. t + T.J - 0 - 
scihjei:t t o  

rlx = r A ( t )  x t- E ( t )  ii(t)]dt + C ( t . x )  dn 

x(9) = x i 
where x is en rn dimensional vector. 

A is Fn m F:r n meas.uet.le matrix, 

11 is  ~n h < m dimensionel vector, 

R j.s en m by h rnmsgmble nmtrlx, 

n is F k < m dimensional sample vector of 8 rendam process. 

C is en m Fy k meesiimble nmtrix 

T, end 3 ere given es  prt of the proklem. 

- 

For t h i s  system. onpite the trensit ion densit ies of the z-process defined 

by 

d? = A(t) z itt + c ( t , x )  dn i 
z ( 3 )  = x I 

Next: wmp*rte the ::ontrol vector '1 t o  mximize 

stikject t o  

(37-1 = A(t) y d t  - B ( t )  :I. dt 1 
' y(9) = 3 

The method of ~:pp-:mch is motivated by the edwntrge of the siipey- 

position prope?.ty of l ineer  systems A proper transletion of the 
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zoodinate-system rdirces the present problem t o  Mishchenko-Pontrysgin's 

p i r s . i i t  pimblm which i s  smm~riiecl i n  Section 3- Thus: if the s ta t is t i '3s  

of t h e  7-pmcess i s  i n  cg,.eement with the hypotheses f o r  the pwsx i t  

problem7 then the known -es.il.ts ::en be med t o  complete the sollition. 

The :anpatetion of the t innsition densit ies of i=-p?-ocess. uhi-h i s  

m q i i r e d  for the ewlwt ion  of Pr [ j z - y ! \  < r 3, is presented i n  Seytion 4.3  

4 .  Cmputr~tion of Tiansition Densities 
- 3  

Consider the sto-lE s t i n  d i f fe-ent ie l  system 

dz = A(t) - dt + C ( t )  dn 
{ (38) 
'. 7(3) = 3 

where 7 i s  en m dinensionel vector, 

n i s  en II dimensionel (k, m) sempxe vector - 
of e rendom process with independent and orthoeonel increments 

Arcording t o  Doob r233, the integral  C ( t )  dn i n  the uswl S t i e l t j e s  

sense 8oes no t  ex i s t  with proPnFfLity one 'recu*ise the s a q l e  A Pa.nn Y I L t l V I l U  

of processes wi th  independent increments ere of mbounded variation v i t h  

probebili ty one. This integml . however, can be redefined es e s t o c h s t i n  

integi-1 r23] so t he t  it does exis t .  Under t h i s  def ini t ion,  the l i m i t  

of the seqaence of S t i e l t j e s  sims exists i n  a " l i m i t  i n  the mean" sense. 

The sollition of system (38) is known E S  1233 

where &(t, T) is the m by m continnous matrix setisfying 

d #(t, T) = A ( t )  @(t, T), a t  

#(T, T) = ident i ty  metrix L 
r 
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and the i n t e g m l  i n  (39) is e etocheetic integml. 

To f e c i l i t a t e  the diaczseion l e t  

end 

. i-1 

where 

T~ = tl and T = c ,  
0 

are rendom veriebles. The t ransi t ion density 

where the p’s e r e  defined i n  Section 3. 

The sequence I 1tn I -‘onverges t o  I i n  a t . i . n  sense 8s descr*ihed % 

by Doob r233 A qiestion eriees P S  t o  the conditions . i p n  which the con- 

vergence of p 4 i n  e siiitxhle sense e s  i -. Once the conver- 
i$ 

gence is  estel-lished. ’ihon, (40) implies tliet the z-prowss t?ansi t ion 

densi t ies  :pn 3e ~pproximted  l-y the ~ ~ o n d i t i o m l  densit ies p . 
T ~ -  I I i  

‘1x72 0, ‘cl 

The investigction of the convergenee F : . o > ~ c ~  w i l l  >e defer-ml f o r  the 

f t i t ve  s t  idy. 

w i l l  he disclissed i n  ‘;he lollowing. 

The ronplitc t ion of the condition81 densities, however. 
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I 

end S he e =ndm vector defined. P S  
qr 

r 
s = c Yks 
qr k=q 

To express the ronditionel density 

ps Is  (s qr !s 3, q-1 1 
qr ' 3, o y l  

i n  terms of n stetistips 

(1) The Y 

(2 )  

the follawi23g, two steps ere i-eqii .-eA: 

stztistits w i l l  be writ ten i n  terms of n sfstistics. and 
kq 

the  desired S dist?-ihations will he writ ten i n  terns of Y 

s t e t l s t i c s .  
kq 

For the f i r s t  of these two steps, ctonslder the ilirnensjor! of the 

elements of (41)  : 

Y is  F-n m-dimensionel vector, 
kq 

n(Tk+l) - n(? ) is  en h m dimensionel vector, - k 

@('rq, T ~ )  C(r,) is en m 1,y h m t r i x ,  and is essmed t o  heve 

rank h. 

To f e c i l i t g t f  the dis-lisslon, let 

= n(Tk+l) - n(Tk) 

= @( TqP 'k)c( Tk) qk 

Also, s q e r s c r i p t s  will he med t o  denote vector elements. e g.  the 

th i I- element of A 5  is A%. Thus (41) becanes 

'kq = 'qk% (43) 

From the dimensional cansiaemtions stnted eer l ier ,  (43) represents 
h 

e mepping of E In to  a subspce, f; of I!?. 

a suitable "coordinete" system 8s follaws. 

orthonormel besls for 3. 

The next step is t o  constrict  

. . . ,  V he an L e t  vlkq, mq 
. . . . v he Fn orthonormal 

aq Bq' * . * Y  v hkq' 
Let v 
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basis for Ef. Let V 

and l e t  V 

every I 

be the  m by h nmtrlx who80 colwmm are  vaq, . . . ,vhbq, 
hkq 

lLq' * - ' J  v For he the m by m nmtrix whome col*upns are v 
*q' - -q 

kq' 
the3-e is e uniqtie m-dlmenrlonel vector a such t h a t  

This is trlie beerwe the ~~-1lmns of V 

elnce the f i r s t  h colmins of V 

form e be818 for I?. Moreover, *q 
form R beeis for -f, then 

*q 
at = 3,  i = h +  1, ..., m, 

yks 

s 5. TIPIS Y E 5 i s  eqilvalent t o  
if 'kq kq 

cV2q 'k.2 = 3 ,  i = h + 1, ...? m. 

Fram (44), 

(44)  

where ' denotes trrnspose. From (44) and (45) 

where 6 i s  the  D i r a c  delte .  Thfs canpletes the first or̂  t'ne tiio stzps. 

For the mmprtetion of p it is noted tha t  the mndition- 
Sqr'S3, q-1 

ing varieble i s  e linerx. canbinetion of those An's which do not eppeer i n  

S Since the An's a r e  independent, hence 
qr ' 

From ($6) and (42), 

4 

Since the h l s  a r e  independent;  
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PROBLEM OF A " H P  pOINl!IIG DIRECTION 

In the p-wt:edlng sections, Mishrhenko's pirs lit pr*oblem end the 

r e l - e v n t  s ib,ject were disc*issed. The resiilts w i l l  now be spplied to the 

problem of EntennP pointing direction. 

C.. I Prohlem Stetement 

As indimted i n  Section 4 .  the motion of the vehicle is  rtssumed t o  

I-. p governed by EI s::stem of l inear  stochasti- di f fe ren t ia l  eqiation 

dx = rAx + B n( t ) ' J  d t  + C dn 
- 

x(3) = x 
(49) 

where x is 8 3-dimenaionel s b t e  vector; n I s  e 3-dimeneionel semple vector 

of E mndan process B I X ' : ~  the t  the veriation 6n i n  any two e m l l  consecutive 

time i n t e r v g l s  is s b t i s t i z ~ l l y  independent end geueaien distributed with 
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zero mean; u( t )  is  8 control vector with a dimension < 3; A ,  B end C - 
are constznt matrices with appropriete dimensions. The 3-dimensionel 

zooxdinate system i s  so chosen thet 5 end "2 define the entenne 

pointing direction end x 

given referewe point. 

an  eqtiilibrirm s t a t e  a t  which the exec t  pointing direction end the height 

the distence between the s p c e  vehicle end sme 3 
The origin of the coordinate syetem represents 

of the vehicle is obtained. The relation between the performftnce of the 

control ler  for the pointing direction end the polnting engle i n  the 

coordimte system is  shavn i n  Figtire 7 ,  i n  vhirh the rad i i  rl. r end 2 '  

e r e  given. For convenience, the performance of the controller f o r  r3 

r3 3 -  3 -  3 

the vehicle height is defined i n  e similer w6y: 1 . e . .  Ix  1 < r3, 
3 -  

< \ x  1 < r2, r2 < \ x  \ < rl and rl < !x  1 define the fom- different  

Thus Figure 2 Is elso c grPphice1 representation performence regions. 

i n  the 3-dimensionel s p c e  of the performence iones, which F i - e  defined 

by the concentricel spheres, of the controller. 

It is  reqiilred t o  synthesize e controll-er which i s  c e p b l e  t o  

perform Modes 1 end 2 of opemtlon eccording to "ne s t i r t i 8  of' the 

3-dimensional s t a t e  vector x. 

8olved by an application of Hishchenko's prirsiiit problem rl], which is 

A s  indicated before, the problem will be 

oatl ined i n  Section 3. I n  order t o  epply Mishchenko's resrilts, e 

refomtiletion of the antenna problem ie necessary. 

r .  2 Reformtila t ion of the Antenrm Problem 

Let  x = z - y such the t  

d7 = Az dt + C dn 
- 

z ( 3 )  = x {. 

i 
and 

dy - Ay a t  - R ll(t) at  

Y ( N  = 3 

(53) 
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then the x-process (49) is divided-into two perts The y-system yields 

en ordinary deterministic zontrol prohlem while the 7-process is stochastin. 

For the plirpose of disciission, the controller i s  assmed i n  Mode 2 

Of operrtion. 

imi?es the prolxFili ty the t  fl x( t ) p  = 1 7( t )  - y(t)!l C r3 for  some 

Then the problem i s  t o  find e -.ontrol i np i t  '1 whir.h mex- 

Since, by rssmption: 6n i n  eny two smell conseclitive t i m e  i n t e T v l s  

i s  SIX t i s t i c p l l g  inclepenrtent end g r a s s i ~ n  distrihated.  it is known 

r22, 233 thet  the I-groress i s  Merkovien pnd i ts  tmnsi t ion pl-ohability 

flinztion se t i s f i e s  the baeku~ rd diffmior, eqretion 

where P = Prri(T)GG17(5) = fo r  T > 0 - I). 
G = e fixed Rorel set, 

c c  

Ass me the t  e11 thc  eigenml ies of the s p e t : . i r :  Powriience mt l - ix  

rhij] a r e  positive pnd bounded, and the Mei.kov process if! .*ontinlio-is in 

?he sense the t  for ~ 1 . 1  5 > 3 ,  

where p(F,cdq,d - A?) is  the tmns i t lon  denrity fiinction ~1s defined i n  

Section 3. Under these conditions, the res*ilts of Mishchenko's p w s ~ i l t  

problem, which is s r~ r~ l l e r i~ed  i n  Sectlon 3 can he epplied. 

q.3  Procedure of Ohteining Prohsbility Function 

L e t  t,l(u,p,T2) be the probcbility of entering the good perfomnce 
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. I 
f I 

zone a t  some t c T3, ~ ~ j ,  3 

Nishchenko, tu a l so  sa t i s f i e s  the beckward diffusion equation 

9 < T~,' given z(e) = C. ~ccording to - 

Then $ 

(1) 

can be ob* ined a s  follaus: 
U 

Detennlne the t r m s i t i o n  density function of the 2-process. I n  the 

present cnse, the srmple vector dn has special properties by hypo- 

thesis.  

I 

Since the system is linear, it is known t ha t  the s t a t e  vector 

z is  gaussian distributed. AB discussed In  Section 5.2, the bypothe- 

t ical  conditions on the n-process In the present also lead t o  the 

conclusion the t  the z-process I s  Ibrkcndan. Thus the t ransi t ion 

E( 6n) (En) ' 
6t W = lim 

6 t  -4 0 



t 
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Wote thet as u 4 T, Q approaches C W C' which is  equal t o  b t fb  

where b 

Determine the eigenmlues )L1, A2' end X 

positive definite comrience mtrix [h 3. These eigenvalues a re  

required f o r  the detemim tion of the ell ipsoid 

3,  i J  
is defined by equation (53). 

(2) fo r  the 3 by 3 eymetric 3 

53 

i Xi wi 2 = r3 2 
J 

, which i s  a mepplng of the sphere 
- Mij =j/ 'i 

where u = + 
i 

j= 1 

3 ' t r when biJ ?2t,/"tiaSj = 9 is transformed in to  
L 51 3 

2 
the Laplace equztion *'*Jh1 = '3. Here M is a rotation laetrlx 

i 

whose I-th column is the orthonomlized eigenvector associated with 

( 3 )  Detennlne the eigenfunction Vo(?)satiefying 

where S t closed surface of the ell ipsoid defined by equation ($), 

w, fi L any points on S, 

p(G,%) = distance between two points 

8 - angle between the vector p from Q t0 3 and the outward noma1 t o  

8 at G. 

6 

and c .  

Thle is a FredhoJrn equation of the second kind. Ilo analytical  solution 

is known. To determine 4;) numerically, the earface in tegml  must be 



P 

# 

expressed as ordinery double Integrals. 

t l l lpeold can be written as 

&a equation ($), the 

Then, equation (57) can be reduced t o  

w = +  -SI 1 COB 8 * ~ ) / 1 + ( $ > 2 + ( 2 ) 2 ’ d + f i 2  
D P ( v d  1 2 

- 2r 
(59) 

where the sign is detelrmined by the proJection of the outward normal 

t o  3 a t  fi onto the w3-axis, and D is the projection of 8 onto (wl,w2)- 

plane. 

which sa t i s f i e s  (57), and hence (59) .  

v(G) gives the desired v0(&). 

Determine the ccnstant a fran the formula 

It is known [I, 243 that there exis ts  a unique eigenfunction 

Thus a numerical eolutlon of 

(4) 

where r(a) is the distance frm e t o  the origin. 

numerical evaluation, equation (60) is wri t ten  in terms of ordinary 

For theopurpose of 

double integrals: 

( 5 )  Determine the system probability function ro(U,c,.c) frau the fom:iia 
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for 0 < U < 7 where - 
% = z (U)  as defined before, 

c = Y ( 7 )  

R = 3-dimensionel Euclidesn sFce ,  

( ) '  = transpose of (1. 
(6) Determine the pmticl derivatives 

where v = z(s) f o r  sefu,~], 

AI) = s t a t e  vector satisfying equation (51), 

u(s) = control vector appearing i n  equation (Sl), 

ro(8,v,T) = system probability function defined by equetion (61), 

p(v,s(c,a) - tlanrritlan density given in equetion (55) .  

* 



7t 
c 

O(r ) is such that l i m  6(r3)/r3 - 0, S - ~ ( u ) .  
3, r3 4 0 

Thus equation (64) gives an a p p r o m t e  solution for tht b e c m f i  

diffusion eqwtion (9) within an error  of the order of r 
3' 

3.4 The 1 Control 

Once the probability function *u(U,s,Tz) is available, the optirization 

of the control vector u can be achieved by an upplicetloa of the ~ p a x b m l  

principle rl, Chap. I]. Since ro(u,t,T2) does not depend on u and r is 

a posit ive c m t a n t ,  then from equation (a), 
3 

where I x(0) = z ( O ) ,  

0 I a r e s t r a i n t  set  w i t h  f7 C A, 

A .I class of admissible controls. 

The mxtmlzation process is subject to the constraint of the detenain- 

i s t ic  s y ~ t e r  (51). Let 

hrO 
= - F(y,t) - r~ u(t)3' J p(v,tJI,O) dv 

90 R 
then 

The Hamiltonian is 

*' 

f 

where a ( t )  is an rddoint vector rssociated w i t h  the detelnniniatic a p + a  (51). 
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For the system w i t h  fixed terminal time and free end point, it is known 

that pI(T2) = 3 from the tmnsversel i ty  condition r13. 
plays an important role  i n  the optimal control theory and hence It must 

be detelrmined. 

can be obtxined by solving the two-point boundary value  problem. 

grea t  var ie ty  of canputctional schemes have been proposed f o r  solving 

this type of problems with various classes of per.forrPance indices ( the  

functional t o  be e i ther  mximized o r  minimized) and different  0. Most 

recent t ex t  books on the relevznt sabject ere those by Fell  Dbaum r253, 

by Athans end Falb T261, end by Lee and Markus r273. 

The adjoint  vector 

With yo(3) = 3, y(0) = $(T,) = 0 and go(T2) - -1, pl(t) 

A 

Two different  cases of optimal controls a r e  considered as follows: 

If $3 : lui(t)l - < 1, 

max B can be achieved if 

(1) i=1, ..., k f o r  k - < 3, then frore equation (19), 

for t e TO, T2] vherc 

1 if  x > 0, 

-1 if  x < 3,  
sgn x = { 

and u*(t) is an optimcl controller which yields m x  *u(O, 2, T2). 
Emever, when 

ar 
B'rg(t) - J p dv] = o on sane subinterval of TO, TZ], Nt) 

R 

is not defined and a singular control problem results. In equation 

(63), the fonnula f o r  rl, the integrand containe a l i nea r  tern of u. 

Singular solutions i n  this type of problem w e r e  dircumred by various 

authors C28, 291. 

I 

.h; 
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(2) If 0 - A and If control enezgy p u0 0 u dt, when U is a h by k 
0 

positive definite xmtrir vlth k 4 3, ruet be rinirrized almultane- 

ously, then the BarniltonIan is io- as H - H + u U u where H is 

defined by equation (66). 

c - 
0 

U 

Thus U H/dt = 0 yields 

for t rf0, Tz'j, where u+(t) is an opt i ra l  controller which yields 

max r t u ( O ,  x, Tz) - u' U u at). 
0 

6.  amcr,mum 

The enelysis presented in this report leads to a scheme of synthe- 

sizing the 0-1 controller for the antenna pointing direction and the 

height of the spce  vehicle subJect t o  randaa disturbance. The analysis 

l a  an application of Miahchenko's pursuit problem. 

forl.ulas which a re  require4 for tine sysl%esh = r e  gareae?.+,or?. 

cmputer progmma and t h e k r  flm charts for the evaluation of double 

in teg la l s  and cigeniunctions satisfylw the h.edholm equation of the 

second kind are included In the A p p n d i x .  

The computational 

B-gltal 

7. "u?mmREroRlE 

The h e d i a t e  s tep  w i l l  be a simulation study of the antenna pointing 

system on a a l g l t a l  cunputer w i t h  sane data package related t o  existing 

vehicles. 

be Investigated. 

The convergence problem of the canputational scheme w i l l  also 

Problems of time-varying ayetems with state-dependent noise w i l l  

a l s o  be studied. The canputation f o r  these systems is an extension of the 
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results i n  t h i s  report but is much more involved. 

The extension of the method t o  higher order systems, especially those 

In  which the target lnanifold has e dimension l e s s  than that of the system 

panifold [30], will be examined closely. Attention w i l l  be focused on 

any hidden p i t f a l l s .  

space vehicle will be wed as a test model f o r  the cmputatlonal metM. 

Once this I s  ctnnpleted, numerical data f o r  a physical 

I 

I 

, A ccmparison of the results so obtained against those from existing 

control systems is  a l s o  planned. 

The future theoretical  studies inc lude  the following Items: 

The sufficiency :ond$,tlon on the noise that grterentees the response 

of the dynamicel syrtem being hbrkovian and satisfying the hypothesis 

(1) 

of the p u r s u i t  problem w i l l  be determined., 

The convergence of sequence [%I 1, which was discussed br ie f ly  i n  (2)  n 
Section 4.3, w i l l  be eetabllehed regomusly. 

( 3 )  Along the Bame line,  an error estiaaate f o r  

w i l l  be developed. hi - 9 -  -SI 5‘1 
~. 

(4) Methods of evaluating (m-l)-dlmensionel surface in tegmls  will be 

invertlgated by meam of the tensor analysie. 

In the iollcning, a numerical rethd for the evaluation of e u f i c e  

in-18 in the 3-diarenrIoml ere-coordimte r p t a  l r  presented. The 

metbod l r  developed for the evaluation of equertlon (601, 8ectlon 5.3, 

Y 
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rhere e 8, 

9 i s  the surface defined by 

D is  the projection of S onto the (wl,w2)-pleney i 

+ 3  3 2 7 1 2  > 
r(G) = [ G; + - 2  w2 

vo(G) is  the eigenfunction mtisfying 

i n  which and E S, 

p I: G - Q, ( D distance vector) (73) 

a(:) is  the s-ce eleslrent vector with a direction pointing 

outward a t  ;i f S. 

It  i s  known thet 

CIS($) = (a1, a2, 1) (74) 

where 

i=1,2. 

Combine equations (73), a d  (73) through (75), equation (72) may be 

written P S  a double integral 



. 

A nmeri-t L ncthor? f o r  the napputation of the eigenfunction 

vo(Gl,G2) sssocizted with equation (76) is as follows: 

(a )  D i sc re t i a t ion  of fll C2, 5 e& ii,. 
1' 

3' 
- -r / , .+ ( i - l )Av  

3 J  

f o r  i=1,2,  . . ., M, znC! j=1,2, where 

(b)  Dis::retir::tion oT F and v. 

M - 1  hf(k) 

- 0  
k=l  h=h (k) 

where 

M - 1  
M-1 

hf(k) = 1 + - (1 + 
2 ,/I2 [ 

( c )  Rehrmngement of vis 

The followlag 18 a rearmn&zment of the two-dbensional a m y  Y i J  
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Into the one-dimensional a m y p  so that I t  can be computed as  

an eigenvector: 

-s;l a v lJh.(l)  

-hf(l) V - ho( l )  + 1 r V  l ,h f ( l )  

-hf(l) V - he( l )  + 2 r V  2 , hO( 2 1 
. . 

V Q P V  q +  l , h o ( q +  1) + S - 1 
. 
0 

9 
where Q = 7 [hf(i) - h'(i)]+Q+s; qt0,lJ .,k2; la< h f (q+l)-ho(q+l)+l. - -  ._ 

1x1 
8 

Thus the mapping Vi' 4 5 * I s  defined by (i, j! 4 p with 

-1 
6 

(a) 'Phe Inverse nmpping p -+ (1,J) i a  given by the algorithm represented 

by the flow c b r t  i n  Figure 8. Under the mapping g, equation ( 8 4 )  

becanes 

where 



r U - a  r 

I No 

I Yes 
t 

j = h O ( M - q + l ) + p - q - l ’  
L 

t 
j = h O ( M - q + l ) + p - q - l ’  

L 

FIGURE 8 
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B.1 

Thus the eigenvector [5oq] associated with the m t r i x  [Gq '1 represents 

a d i rc re te  approximation to the eigenfunction Vo(Gl, s2). 
The eigenvector mentioned above can be obtained a s  f o l l o w s .  A prriaie (e) 

considemtion i n  the selection of en algorithm for this task is the 

aimeneiolrality of the mtrix [OP "3. The t o t a l  number of elements of 

the ret- is (M-1) . 4 Thus, if the wl, w2 exes a r e  discretized in to  4 

23 segments, the w t r i x  contains 160,930 elements. This mplkes it 

imprectical to attempt the storage of the aretrix. 
f 

For this reason, 

the  elements will be computed a8 they a re  needed, usiag the inverse 

nmppw with the expl ic i t  expreraions for Gq ' glven by (91) with 

associated equations (79)  through (90). 

The computational algorithm is bared on an iterative technique f o r  (f) 

detexmlning the maximum eigenvalue and associated eigenvector of a 

given metrix [3l3. Figure 9 shows a flow chart which describes 

the algorithm. After the execution of the iterative cycle four 

times, the computed data are checked against a crpeclfied accuracy require- 

me&, ( ACC ). If the requirement is m e t ,  the process i o  texmlnated. 

Otherwise the process enters another i t e ra t ive  cycle. The process is 

a l s o  tenninsted i f  the required accurecy has not been attained a f t e r  

E. predetermined nrmber of i terations ( LSTOP ). 

The above describes the procedure of detellnini% Vi'. The canputation 

of a given by equetion (69) is straightforward. By a rlmilar procedure, 

(69) can be discretized 2s 



t 

I - i  - i - 1  u - u  + 0.1; i = 2, ..., 

1 

L G = a i-2, . . . , T I  



1 

where 

82 

W - 1  hi (k) 

b 1  bh'(k) 

Y- 

I L  s"J;;- 
(93) 

mure 10 shows a flow chart which describes the algorithm for c m -  

put- a by equation (93). 



t 

I C@e ho(k) and hf(k), 

I -v 

+ L 8 !  h < ho(k)?4 
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